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SUMMARY

The safety and efficiency of free flight will ben-
efit from automated conflict prediction and resolution

advisories. Conflict prediction is based on trajectory

prediction and is less certain the farther in advance the

prediction, however. An estimate is therefore needed
of the probability that a conflict will occur, given a

pair of predicted trajectories and their levels of uncer-

tainty. This paper presents a method to estimate that

conflict probability. The trajectory prediction errors
are modeled as normally distributed, and the two er-

ror covariances for an aircraft pair are combined into

a single, equivalent covariance of the relative position.
A coordinate transformation is then used to derive an

analytical solution. Numerical examples and a Monte

Carlo validation are presented.

INTRODUCTION

The economics and efficiency of air transportation

in the continental U.S. could be improved significantly

if the rigid routing restrictions currently imposed by the
Federal Aviation Administration (FAA) (ref. 1) were

relaxed to allow more direct or wind-optimal trajecto-

ries. The current routing restrictions help to maintain

the safe and orderly flow of traffic, but new technolo-

gies are being developed to make them unnecessary.
The ultimate goal is free flight (refs. 2 and 3), which
could save the airlines several billion dollars per year

in direct operating costs, according to the Air Trans-

port Association (ATA). The safety and efficiency of

free flight will benefit from automated conflict pre-
dictions and resolution advisories. By definition, a

conflict (not to be confused with a collision) occurs
when two or more aircraft come within the minimum

allowed distance between each other. The minimum

allowed horizontal separation for en-route airspace

is currently 5 nautical miles (n.mi.). The vertical

separation requirement above an altitude of
29,000 feet (ft) is currently 2000 r; below that level it
is 1000 ft.

Aircraft trajectory prediction is inexact, primar-

ily because of wind modeling and prediction errors

and secondarily because of tracking and flight-control
errors. Wind estimates, based on the Mesoscale

Analysis and Prediction System Rapid Update Cy-
cle (MAPS/RUC) (refs. 4 and 5), are provided by

the National Oceanic and Atmospheric Administration

(NOAA). The farther in advance trajectories are pre-

dicted, the more uncertain those predictions are, par-

ticularly in the along-track direction, because aircraft
in cruise are usually programmed to maintain a partic-

ular airspeed, and the resulting groundspeed depends
on the winds. Because conflict prediction is based on

trajectory prediction, the farther in advance a poten-

tial conflict is predicted to occur or not to occur, the

less certain that prediction is likely to be. A method is

needed to estimate the level of certainty.

The optimal time to initiate a conflict-resolution
maneuver is a trade-off between efficiency and cer-

tainty. The farther in advance a maneuver is initiated.
the more efficient it is likely to be in terms of ex-
tra distance flown, but the less certain will be exactl}

what maneuver is required or whether a maneuver is

required at all. The later a maneuver is initiated, on
the other hand, the more certain will be exactly what

maneuver is required, but the less efficient and more
harsh the maneuver is likely to be. The determination

of the optimal time to initiate a maneuver, therefore,

requires an esimate of conflict probability.
The determination of the optimal maneuver to be

executed also requires a method of estimating conflict

probability, because the goal of conflict resolution is to

reduce the post-resolution conflict probability to some
acceptable level. The conflict probability cannot be re-
duced to zero without introducing gross inefficiency,

but that is not necessary because human air traffic

controllers will be available to catch any unresolved



conflicts.Themethodspresentedin thispaperarein-
tendedto assistrather than replace human air traffic

controllers. That is, they are intended to provide au-
tomated advisories for the controllers, but not to make
the ultimate decisions.

A method is developed in this paper to estimate

the conflict probability for a pair of aircraft in free

flight. The trajectory prediction errors are modeled as

normally distributed, and the two error covariances for

an aircraft pair are combined into a single, equivalent
covariance of the relative position. A coordinate trans-

formation is used to derive an analytical solution. The

paper is organized as follows: first, some background

is given on modeling of trajectory prediction errors and

conflict prediction; the conflict probability estimation

algorithm is then developed. Finally, some numerical

examples and a Monte Carlo validation are presented.

CONFLICT PREDICTION

Conflict prediction can be divided into the follow-

ing three steps: First, the trajectories of all aircraft in

the region of interest are predicted for approximately
the next 20 to 30 minutes (min). These determinis-

tic predictions are based on current estimated positions

and velocities, flight plans, and predicted winds aloft.

This complex modeling and software problem has al-

ready been solved for arrival traffic (ref. 6), and that

solution will be adapted for en-route and departure traf-

fic also. The second step is to coarsely screen all pos-

sible aircraft pairs to eliminate those with a negligible

possibility of conflict. The third step, which is the sub-

ject of this paper, is to estimate the conflict probabil-

ity for those remaining aircraft pairs. This probability
involves the predicted trajectories and an estimate of

their uncertainty.
In aircraft equipped with a Flight Management

System (FMS), the lateral feedback loop is typically

closed around cross-track position, and the stabilized

cross-track rms (root mean square) prediction error is

approximately constant. Typical magnitudes are from
less than 0.5 n.mi. to more than 1 n.mi. Longitudinal

position control, on the other hand, involves using the
throttle to compensate for unpredictable variations in

headwind or tailwind. This compensation tends to be

inefficient in cruise, so the longitudinal feedback loop

is usually closed around Mach number or airspeed, but

not groundspeed or along-track position. For trajec-

tory predictions of up to 20 or 30 min, the unsta-

bilized along-track rms error tends to grow approx-

imately linearly, primarily because of wind-prediction

bias error, as illustrated in figure 1. (This linear growth

is typical but is not assumed or required by the algo-

rithm presented in this paper.) A typical growth rate is
0.25 n.mi./min (15 knots/min) in cruise (ref. 7), but this

rate could be reduced in the future with improved wind

modeling (ref. 8); it is greater in climb and descent.

Trajectory prediction errors based on live air traf-

fic data were analyzed in reference 7 and found to

be approximately normally distributed or Gaussian.

The corresponding error ellipses tend to have their

major principal axis in the along-track direction and

their minor principal axis in the cross-track direc-
tion. (Note that the uncertainty ellipse for a nor-

mally distributed random variable x is defined as the
solution of zTZ-lz = c2, where z = :r - E(:r),

Z = cov(z) -- E(zzT), E is the expected value, and

c is a constant that can be assumed to be unity unless

otherwise noted.)

The cross correlation of prediction errors between

aircraft can also be important because common errors

cancel in the position difference or relative position.

/ Path-crossing
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trajectoriesJ_- I_/ _ Minimum
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Figure 1. Trajectory prediction error ellipses.



Unfortunately,the cross correlation is more difficult to
model than the individual covariances because it de-

pends on the trajectories and a spatial wind-error corre-
lation model. The spatial wind-error correlation model

will be a function of both separation distance and head-

ing angular difference. Aircraft pairs with nearly per-

pendicular flight paths will tend to have weakly cross-
correlated prediction errors because their along-track

positions are affected by different wind components.
Aircraft pairs with small path-crossing angles and small

minimum separations, on the other hand, will tend to

have more strongly cross-correlated prediction errors,

both because they are affected by a common wind com-

ponent and because they spend a relatively long time

close together. Although this area is open for research,

it will not be pursued in this paper.

CONFLICT PROBABILITY ESTIMATION

This section is divided into five subsections. First,

the method of combining two prediction-error covari-

ances into a single covariance of the relative position
is discussed. Next, a coordinate transformation is pro-

posed that transforms the combined error covariance
into a standard form. Then the analytical solution for

the conflict probability in two dimensions is developed.

The generalization from two to three dimensions is then

discussed. Finally, the application to conflict resolution

is previewed.

Combined Error Covariance

The trajectory prediction error for an aircraft will

be modeled as normally distributed, with zero mean

and with a covariance that has eigenvectors in the

along-track and cross-track directions, as explained

previously. The covariance matrix is therefore diag-
onal in a coordinate system aligned with the aircraft

heading. If q is the aircraft position in such a heading-

aligned coordinate system, and q is the corresponding

prediction, then the prediction error is

_=_q-q (1)

and the corresponding diagonal covariance matrix is

S = cov(_) (2)

where coy(x) = E(xx T) for any random variable x,

and E is the expected value function. If _ is the

heading angle in some Earth-fixed reference coordinate

system, then

[cos_p -sin_b ] (3)R --- sin _b cos _b

is a rotation matrix that transforms the heading-aligned

coordinates to the reference coordinates. The position

prediction error in the reference coordinate system is
then

t5 = Rt} (4)

and the corresponding covariance matrix is

Q -- cov(/_) = RSR T (5)

Because the trajectory prediction errors are modeled as
normally distributed, the two error covariances for an

aircraft pair can be easily combined into a single equiv-
alent covariance of the position difference or the rela-

tive position of one aircraft with respect to the other.

For present purposes, this combined covariance can

be assigned to one of the aircraft, referred to as the
"stochastic" aircraft, and the other aircraft, referred to

as the "reference" aircraft, can be regarded as having

no position uncertainty.

Let subscripts S and R designate the stochastic and

reference aircraft, respectively. The position difference
is

Ap =--PS - PR (6)

The prediction of that position difference is

Ap = Ps - PR (7)

and the prediction error is

A/5 =_ Ap -- A/5 =/5 S -/5 R (8)

The combined prediction error covariance is then

M - cov(Ai6) = Qs + QR - QSR (9)

where Q s and Q R are the individual covariances based

on equation (5), and the cross-correlation term QSR is
defined as

(10)

In general, the error ellipse corresponding to the com-

bined error covariance will no longer have principal

axes aligned with along-track and cross-track direc-
tions of either aircraft.



Figure2 showsanexampleencountergeometry,
withthecombinederrorellipsecenteredonthestochas-
tic aircraft,andthecircularconflictzone(5-n.mi.ra-

dius) centered on the reference aircraft. The error el-

lipse corresponds to a probability density function that
can be represented as a surface over the ellipse. The

ellipse is actually the intersection of that surface and a

horizontal plane cutting the surface. The total volume
under the surface is unity. The probability of conflict

at a particular time is the portion of that volume that
is within the circular conflict zone. An analytical so-
lution has not been found for this probability, but it

is not as important as the total probability of conflict
for the encounter, which is discussed in the following

paragraphs.
It is assumed that the aircraft velocities and pre-

diction errors are constant during the period of poten-
tial conflict, which is at least approximately true for

most aircraft pairs in free flight. The total probability
of conflict for the encounter can then be determined as

follows: Project the circular conflict zone along a line

parallel to the relative velocity to form an extended
conflict zone, as illustrated in figure 2. The conflict

probability is equal to the portion of the volume under

the probability density surface that is within this ex-
tended conflict zone. The coordinate transformation to

Combined

error

ellipse

Circular

conflict

zone

Relative velocity /
Extended conflict zone

Figure 2. Encounter geometry.

be presented in the next section allows this probability

to be determined analytically.

Coordinate Transformation

Coordinate transformations are often useful for

simplifying problems. They are widely used in control

theory, for example. In this case, the conflict probabil-

ity is difficult or impossible to determine analytically

in the original coordinate system. It can be determined

numerically, but a numerical solution is likely to be
much less efficient and less accurate than an analyt-

ical solution. This inefficiency is undesirable for an

algorithm that is intended to run in real time at a very

high rate for many years. Fortunately, a coordinate
transformation has been found that allows an analyti-
cal solution.

Let p and p represent the original and transformed

coordinates of position, respectively. A general linear
coordinate transformation is of the form

p=Tp (11)

p = Wp (12)

where T is a transformation matrix to be determined,

and W _ T -1. The transformations for velocity and

other vectors are of the same form. Combining the
definition

Ap =--PS -- PR (13)

with definitions (6)-(8) gives

At5 = TA/5 (14)

In the transformed coordinate system, the mean pre-
diction error is still zero and the combined error co-

variance is

cov(Ats) = TMT T (15)

where M = cov(A/5) is the combined error covariance

in the original coordinate system from equation (9).

A Cholesky decomposition (ref. 9) or "square-
root" factorization of the combined error covariance

M is of the form

M = LL T (16)

where L is lower triangular. If T is of the form

T = RL -1 (17)



whereR is any orthogonal rotation matrix, then equa-
tion (15) becomes

coy(A/5) = I (18)

where the fact that RR T = I has been used. The com-

bined error ellipse is therefore in the standard form of a
unit circle, as shown in figure 3. The conflict boundary,

which was a circle in the original coordinate system,

is an ellipse in the transformed coordinate system, also

as shown in figure 3.

Analytical Solution

Having the error ellipse in the form of a unit

circle simplifies the probability computation consider-

ably because the corresponding two-dimensional (2-D)
probability density function decouples into the prod-
uct of two identical one-dimensional (l-D) functions:

p(x, y) = p(x)p(y), where p(x) = exp(-x2/2)/v/-_.

The probability density function can be represented as
a radially symmetric surface over the circle. The cir-

cle is actually the intersection of that surface and a

horizontal plane cutting the surface. The total volume

under the surface is unity.

In the transformed coordinate system, the ex-
tended conflict zone is still in the direction of the

(transformed) relative velocity, and the conflict proba-

bility is still equal to the portion of the volume under

j Combined

;/A)
Z

Figure 3. Transformed encounter geometry.

the probability density surface that is within this ex-

tended conflict zone. The rotation matrix R in equa-

tion (17) can be used to rotate the transformed coor-

dinate system about the origin. It can therefore be

selected such that the relative velocity is in the pos-
itive or negative x-direction. If Av -- v S -- v R is

the relative velocity in the original coordinate system,

and Av =- (Avx,Auy) - L-1Av is the partially
transformed relative velocity, then

1 [ Av'x Avy ] (19)n-iiA ll -A.y

The boundaries of the extended conflict zone are then

the minimum and maximum values of y on the ellipti-
cal conflict boundary.

Let Apc and Apc represent the original and trans-

formed coordinates, respectively, of points on the con-

flict boundary relative to the reference aircraft. The

equation of the conflict boundary is

It Ape [I = If WApc II = Sc (20)

where Sc is the conflict separation distance (5 n.mi.)

and W is defined in equation (12). This equation can

be squared, then expanded according to

[ xc] [ab1Ape-- Aye IyTw -- b c (21)

The resulting equation for the elliptical conflict bound-

ary is

2 (22)a Ax2c + 2b AzcAyc + c Ay2c = s c

The minimum and maximum values of Ayc can then

be determined by at least two different methods. One

method is to consider equation (22) as a quadratic equa-
tion in Axc with coefficients that are functions of Aye.

The minimum and maximum values of Ayc can then be

determined by setting the discriminant of that quadratic

equation to zero and solving for Ayc. Another method

is to differentiate equation (22) with respect to Axc and

solve the equation d(Ayc)/d(Axc) = 0, together with

equation (22). The result is

Ayc= +Sc_/a/(ac- b2) (23)

at the minimum and maximum points. Note that a

is positive and ac- b2 is positive and invariant with

respect to rotation for any ellipse (ref. 10), so the argu-

ment of the square root function must also be positive.



Theconflictprobabilityis theportionof thevol-
umeunderthesurfaceof theprobabilitydensityfunc-
tion that is within the extendedconflictzone. Be-
causetheprobabilitydensityfunctiondecouplesinto
p(z, y) =- p(x)p(y) and the conflict boundaries are

parallel to the z-axis, the expression for the conflict
probability Pc can be simplified as follows:

= f-Ay+Ayc f__
Pc J--Ay--Ayc _ p(x, y) dx dy

= f -AyWAyc /__J-Ay-Ayc p(y) dy _ p(x) dx

f -Ay+Ayc
J--Ay--Ayc p(y) dy

= P(-Ay +Ayc) - P(-Ay - Ayc) (24)

where Ay -- YS - YR is the y-coordinate of the

stochastic aircraft with respect to the reference aircraft,

and P is the cumulative normal probability function.

The latter, defined such that P(z) = fz_oo p(s)ds for

any random variable z, can be determined analytically
(ref. 9). This analytical solution for the conflict proba-

bility is therefore theoretically exact under the assump-

tions stated previously.

The main assumption is that the aircraft velocities

are constant (in both magnitude and direction) during

the period of potential conflict. Free-flight trajectories

typically will be fairly direct and have few turns, so
that assumption is likely to be accurate in most cases.

For constant velocity, the time at which the minimum

predicted separation occurs is

ApT Av (25)
trn = to + AvT A--------_

where Ap0 is the position difference at time to, and

Av is the constant velocity difference, both in terms

of cartesian coordinates. The position difference at

minimum separation is then

Apm = Ap0 + (tin - t0)Av (26)

The minumum separation distance itself is It Apm II.

Small variations in aircraft velocity due to wind

disturbances or wind-optimal routing have only a small

effect in the immediate vicinity of an encounter, so they

will not significantly violate the assumption of constant

velocity. The predicted velocities at the point of mini-
mum predicted separation are tangent to the flightpaths

and can be considered first-order linear approximations

to the actual trajectories at that point. In the unlikely
case that a large heading or speed change is scheduled

in the vicinity of a potential conflict, on the other hand,

the analytical solution for conflict probability will not
be accurate.

Three-Dimensional Case

If the two aircraft are in level flight at different

altitudes, or if one or both of the aircraft are climbing

or descending, the problem is three-dimensional (3-D).

The basic modifications required to the 2-D case are

discussed in this section. For simplicity, the along-

track axis is defined as the projection of the predicted

velocity vector on a horizontal plane. The along-track
and cross-track axes are therefore horizontal by defi-

nition, and the prediction error ellipsoid is modeled as

having its principal axes in the along-track, cross-track,

and vertical directions. For en-route flight, the conflict
zone is a cylinder or disk with a horizontal radius of
5 n.mi. and a vertical thickness of 2000 ft.

A coordinate transformation can be used to trans-

form the error ellipsoid into a unit sphere. Most of the

previous analysis still applies, but in three dimensions

rather than two. The transformation can be decoupled
into a 2-D horizontal transformation identical to the

one discussed previously and a vertical transformation

that is a simple scaling. The conflict zone, which is
a circular cylinder in the original coordinate system,

is an elliptical cylinder in the transformed coordinate

system. The transformation can still be selected such

that the relative velocity is in the positive or negative
z-direction.

Consider first the case in which both aircraft are

in level flight, but at different altitudes. In this case

the relative velocity vector is horizontal, and the pro-

jection of the disc-shaped conflict zone along the di-

rection of relative velocity forms a rectangular volume.

The conflict probability is the product of two cumula-

tive normal probability differences, one that is iden-
tical to equation (24), and another of the same form

that applies to the vertical axis. That is, the horizontal

conflict probability of equation (24) can be general-

ized to three dimensions by multiplying it by a ver-

tical conflict-probability factor. The vertical factor is

P(-Az + AZc) - P(-Az - Azc), where Az is the

predicted vertical separation between the two aircraft,
and Azc is the minimum allowed vertical separation

(2000 ft), both normalized (divided) by the vertical rms
error.



A typical vertical rms error, which is caused pri-

marily by baro-altimeter error, is approximately 100 ft.

For all practical purposes, it can be assumed that the
vertical error will not exceed +400 ft for each aircraft

or x/2 × 400 _ 600 ft for the altitude difference of

two aircraft. Therefore, if the predicted vertical sep-
aration is less than about 2000 - 600 = 1400 ft, the

vertical factor is virtually unity, and the 3-D conflict

probability is essentially equal to the horizontal con-

flict probability. If the predicted vertical separation is

greater than about 2000 + 600 = 2600 ft, on the other
hand, the vertical factor is virtually zero, and the hori-

zontal conflict probability need not even be computed.
For a vertical rms error of 100 ft, therefore, the verti-

cal factor needs to be computed only if the predicted

vertical separation is between about 1400 and 2600 ft.
The case in which one or both of the aircraft are

climbing or descending is more complicated, unfor-
tunately, because the relative velocity is not horizon-

tal, and the projection of the disc-shaped conflict zone

along the direction of relative velocity does not form

a rectangular volume. The cross section of that vol-

ume is a rectangle with halves of an ellipse attached to

the top and bottom. Numerical integration can be used

to approximate the conflict probability, if necessary, or

some heuristic approximation may be possible, but that

approximation will not be pursued here.

Application to Conflict Resolution

The ultimate purpose of conflict-probability esti-

mation is for use in optimal conflict resolution. The

problem of conflict resolution involves deciding when
to initiate a resolution maneuver and what maneuver to

execute. The conflict probability is an important factor
in both decisions. This subsection outlines horizontal

conflict-resolution methods presently under investiga-
tion. Vertical conflict resolution will also be discussed

briefly.

The optimal time to initiate a conflict-resolution
maneuver is a trade-off between efficiency and cer-

tainty. The farther in advance a maneuver is initiated,

the more efficient it is likely to be in terms of ex-

tra distance flown, but the less certain will be exactly

what maneuver is required or whether a maneuver is

required at all. The later a maneuver is initiated, on
the other hand, the more certain will be exactly what

maneuver is required, but the less efficient and more
harsh the maneuver is likely to be. The optimal time to

initiate a maneuver can be determined by minimizing a

cost function that reflects the statistically expected cost

of maneuvering (or not maneuvering) as a function of

time. That cost function depends on the conflict prob-

ability, the operating cost per unit of distance traveled,

and various other issues such as passenger comfort and
controller workload.

A conflict is resolved in the horizontal plane by

moving the extended conflict zone sufficiently far away

from the center of the error ellipse or circle to reduce

j Combined error circle
Extended conflict zone

Relative velocity

Elliptical conflict zone

-_ After conflict resolution

Figure 4. Conflict resolution geometry in transformed coordinate system.



the conflict probability to some desired level. The reso-

lution maneuver involves changing the direction of the

relative velocity for some period of time, as illustrated

in figure 4. The magnitude of the relative velocity is

essentially irrelevant. It is assumed that the aircraft

will complete the dynamic or accelerating portion of

the maneuver and reach a constant velocity before the

encounter (period of potential conflict). The velocity

changes can therefore be modeled as instantaneous un-

til the static maneuver is determined; then the dynamic

transients can be properly accounted for.

The key parameters are the time at which the ma-

neuver is initiated, the time at which it is completed,

and the angular change of the relative velocity. If the

maneuver is completed after the encounter, as shown in

figure 4, its effect is to rotate the extended conflict zone

by an angle a about the point at which the maneuver

is initiated. If it is completed before the encounter, on

the other hand, and the aircraft return to their original

velocities, its effect is to translate the extended con-

flict zone by a distance r perpendicular to the relative

velocity.

The direction of the relative velocity after resolu-

tion can be easily transformed back to the original coor-

dinate system. Then, changes in the individual aircraft
velocities must be determined to realize that relative

velocity. In general, the change in relative velocity

can involve changes in both the magnitude and the
direction of the individual velocities. The solution is

underdetermined, however, and additional constraints

can be applied to simplify the maneuver. For example,

the solution can be constrained to require only one air-

craft to maneuver. In addition, the maneuver can be

further constrained to consist of only a heading change

at constant speed or a speed change at constant head-

ing, if desired.

This discussion applies mainly to horizontal con-

flict resolution, but vertical conflict resolution is also

very important for two reasons. First, because the min-

imum required separation is about 15 times less in the

vertical axis than it is in the horizontal plane, verti-

cal conflict resolution may be more efficient in many

cases, particularly when the minimum predicted hor-

izontal separation is small and/or the vertical separa-

tion is already almost large enough to avoid a con-

flict. Second, because vertical conflict resolution is

much simpler, it may be appropriate for conflicts in-

volving three or more aircraft. For those cases, deter-
mination of efficient horizontal resolution maneuvers

can be mathematically complicated and computation-

ally intensive, and accurate and reliable execution can

be operationally difficult. Separating the aircraft by

altitude, on the other hand, is much simpler.

VALIDATION

The Gaussian statistical model on which the

conflict-probability algorithm is based was determined

empirically by analyzing actual air traffic data (ref. 7).
A Monte Carlo simulation was used to validate the

algorithm itself. In the Monte Carlo simulation, com-

binations of path-crossing angles, minimum predicted

separations, and times to minimum predicted separa-

tion were generated. For each combination, the con-

flict probability was computed and nominal trajectories

were generated. Then the nominal trajectories were

perturbed by a series of random prediction errors, each

consisting of constant cross-track position error and

constant along-track velocity error. Finally, the empir-
ical fraction of cases in which conflicts resulted was

compared with the computed conflict probability.

Table 1 shows a representative sampling of the

differences between the computed conflict probabilities

and the Monte Carlo simulation results. One million

Monte Carlo samples were run for each entry in the

table, and each entry corresponds to a particular en-

counter geometry. The algorithm matches well with

the simulation results. The largest magnitude of the

difference for all cases shown is 1.8 percent, and only

5 of the 72 differences in the table are at or over l per-

cent in magnitude. Most of the differences are well

under 1 percent in magnitude, and many are at about

0.1 percent. Given the accuracy of the underlying

error model and the requirements of the application.

this result is more than adequate. A worst-case accu-

racy of perhaps 5 percent would have been considered

adequate.

The differences are larger than would be statisti-

cally expected, however. The expected standard devi-

ation for each table entry is x/Pc(1 - Pc)/N, where

N is the number of samples and Pc is the conflict

probability. Note that Pc(1 - Pc) = 0 if Pc = 0

or Pc = 1, and the maximum of v/Pc(1- Pc) is

0.5 when Pc = 0.5. Thus, the maximum expected

standard deviation for any table entry cannot exceed

0.0005. One reason that the differences are larger than

expected is that the analytical solution is based on the

8



Table 1. Monte Carlo simulation results: computed minus empirical conflict probability based on 1,000,000 sam-

ples per entry

Path-crossing angle, deg

Minimum predicted separation, n.mi.
Time to minimum separation, min

4 8 12 24

+0.000 -0.009 -0.006 -0.002

-0.018 -0.003 -0.003 -0.002

-0.001 -0.006 -0.005 -0.003

+0.001 +0.006 +0.005 +0.001

-0.011 -0.004 -0.001 +0.000

-0.000 -0.004 -0.004 -0.001

+0.002 +0.012 +0.010 +0.003

-0.006 -0.003 -0.000 +0.002

-0.001 -0.006 -0.006 -0.001

-0.000 -0.000 +0.000 +0.001

-0.001 -0.001 -0.000 -0.000

-0.000 -0.000 -0.000 +0.000

-0.000 -0.003 -0.008 -0.012

+0.001 -0.001 +0.000 -0.000

+0.000 +0.001 +0.004 +0.006

+0.000 +0.000 +0.000 +0.000

-0.000 -0.000 +0.000 -0.001

-0.000 -0.000 -0.000 -0.000

15 0
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assumption that the prediction error covariance is con-

stant during the encounter, whereas it actually grows

with prediction time.

NUMERICAL EXAMPLES

A set of numerical examples of conflict probabil-

ities and related quantities were generated as a func-

tion of encounter geometry. The aircraft speeds were

8 n.mi./min (480 knots) in every case, a typical speed

for commercial transport aircraft. The conflict sepa-
ration distance was 5 n.mi., the currently used value

for en-route airspace. The cross-track rms error was
l n.mi., and the along-track rms error started at zero

and grew linearly at a rate of 0.25 n.mi./min, unless
otherwise stated. These values are typical for cruise.

(This linear-growth model is typical but is not assumed

or required by the algorithm.) Wind-error cross corre-
lation between aircraft was not modeled.

Figure 5 shows the cumulative separation proba-
bility, with prediction time as a parameter, where the
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Figure 5. Cumulative separation probability.

path-crossing angle is 90 deg and the minimum pre-

dicted separation is zero n.mi. (an exact collision).

This value is the probability that the minimum sep-
aration will be less than the abscissa value. Fig-

ure 6 shows the corresponding probability density (the

derivative, with respect to minimum separation, of the

cumulative separation probability shown in figure 5,
determined by numerical differentiation). This plot

9



0.6

0.5

04

0.3

e_

e'_ 0.2

2
0A

0.0

24+:

-....
2 4 6 8 I0

Minimum separation, n.mi.

I I 1 ' I

Path-crossing angle = 90 deg

Minimum predicted separation -- 0 n.mi.

Prediction time =

---- 4 rain I1_

..... 8mini
I

12 min I

16 rain Ii-

_ .. 20minl_

1.0

_ 0.8

.._ 0.6

,o

.'_ 0.4

0 0.2

0.0
0

....... i _ I I I I I r -s---']

_Minimum predicted separation = [-- 0 n.mi.i.

• _ I........2 n.mi.I

_ I 4 n.mi.+
I I

•" '_ I 6 n.mi. I

.... I-+n.m+.:
_-_ 1 10 n.mi.I

Path angle = 90 deg

_.-r I t I I [ I

5 10 15 20 25 30 35 40

Time to minimum predicted separation, min

Figure 6. Separation probability density. Figure 8. Effect of minimum predicted separation.

shows how the density function spreads out as pre-
diction time increases.

It is interesting to see how the expected value of

the minimum separation compares with the predicted

value as prediction time increases. The predicted value
is based on a deterministic trajectory model, with no

consideration for trajectory-prediction errors. The ex-
pected or mean value, on the other hand, is derived

from the cumulative separation probability function P
or the separation probability density function p accord-

ing to E(s) = f0_[1 - P(x)]dx = f_x_ xp(x)dx. Fig-
ure 7 shows the expected value of minimum separation

as a function of time to minimum predicted separa-

tion, with minimum predicted separation as a param-

eter, where the path-crossing angle is 90 deg. The

•expected separation diverges from the predicted sepa-
ration, but the group of curves shown converge to a

common asymptote for large prediction times. Note

that the 0 n.mi. case does not intersect the origin be-
cause the cross-track rms error is nonzero at time zero.

Figure 8 shows the effect of minimum predicted

separation on conflict probability. Conflict probabil-
ity is plotted as a function of the time to minimum

predicted separation, with the minimum predicted sep-

aration as a parameter, where the path-crossing angle
is 90 deg. For small prediction times, the covariances

are small and the conflict probabilities are a strong

function of minimum predicted separation. For larger
prediction times, the covariances grow and the conflict

probability becomes a weaker function of the mini-

mum predicted separation. The conflict probabilities

converge and asymptotically approach zero as predic-
tion time increases.

Figure 9 shows the effect of path-crossing angle

on conflict probability. Conflict probability is plot-
ted again as a function of the time to minimum pre-

dicted separation, but with the path-crossing angle as

a parameter, where the predicted minimum separation

is 0 n.mi. As a point of reference, the curve for

the path-crossing angle of 90 deg is a repeat of the
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Figure 7. Expected value of minimum separation. Figure 9. Effect of path-crossing angle.
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correspondingcurveof figure8. Asthepredictiontime
increases,theconflictprobabilitydecreasesfasterfor
smallerpath-crossingangles.If wind-errorcrosscor-
relationweretakenintoaccount,however,thesecurves
wouldbeverydifferentfor smallerpath-crossingan-
gles.A portionof thetrajectory-predictionerrorwould
cancelin thepositiondifference,andtheeffectiveer-
ror growthratewouldbesmaller.Hencetheconflict
probabilitiesfor smallerpathangleswouldbehigher
thantheseshownin figure9.

Figure 10 showsthe effectof prediction-error
growthrateonconflictprobability.Conflictprobabil-
ity is plottedagainasa functionof thetimeto min-
imum predictedseparation,but with the along-track
rmserrorgrowthrateas a parameter.Thevalueof
0.25n.mi./minor 15 knotshasbeenusedthrough-
out this paperfor the along-trackrms errorgrowth
rate,but valuesof 10knotsand20 knotsarealso
shownin the figure. For eachof the threevalues
of errorgrowth rate, conflict probabilityis plotted
for minimumpredictedseparationsof 0 and10n.mi.
Note that the threepairsof curvescould be col-
lapsedinto one pair by scalingthe horizontalaxis
by thealong-trackerrorgrowthrate. That is, if the
horizontalaxis werethe along-trackerror,the three
pairsof curveswouldbe identical. Showingthem
separatelydoes,however,illustratesomeimportant
characteristics.
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Figure 10. Effect of prediction-error growth rate.

For minimum predicted separations substantially

less than the minimum allowed separation, the conflict

probability starts at unity and decreases monotonically

as a function of prediction time. The effect of larger

error growth rates is to cause the conflict probability

to decrease more rapidly as a function of prediction
time. For minimum predicted separations substantially

greater than the minimum allowed separation, on the

other hand, the conflict probability starts at zero, in-
creases to some maximum value, and then decreases

back toward zero. This phenomenon occurs because

the individual error ellipses expand and start to overlap,

but then after the maximum conflict probability they
expand even more and the probability density function

becomes flatter. The effect of larger error growth rates

is to cause the conflict probability to initially increase

more rapidly as a function of prediction time, and then

to decrease more rapidly after the maximum.

Finally, since computational efficiency is a major

concern in a real-time air traffic control system, basic

timing tests were performed on the conflict probability
algorithm running on a Sun SPARC 10 workstation.

These tests were for the conflict-probability algorithm

only and did not include trajectory prediction, wind-

error modeling, or any other part of the problem. The

average computation time per aircraft pair was slightly
under 0.6 milliseconds. In addition to being theoreti-

cally exact under the stated assumptions, this time is
one to four orders of magnitude faster than a numerical

solution, depending on the method and level of reso-

lution of the numerical integration. Furthermore, it is

fast enough to be used directly in a real-time system.

CONCLUSION

A method is established to accurately and effi-

ciently estimate the probability of conflict for aircraft
pairs in free flight. Accurate probability estimates are

necessary for optimal conflict resolution. The analysis

behind the estimates, furthermore, is also very use-
ful for developing an optimal conflict-resolution algo-

rithm, which is presently under way. These methods

can eventually be applied to actual air traffic to help

controllers maintain safe and efficient free flight,
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